Closing tonight: 2.7
Closing Mon: 2.7-8
Closing Wed: $\quad 2.8$
Closing Fri: $\quad$ 3.1-2
Visit office hours 1:15-3:30pm in Com B-006

## 2.7-8 Derivatives Intro

Summary: Given $y=f(x)$, we were trying to find the slope of the tangent line at the point $\left(x_{1}, y_{1}\right)=(a, f(a))$. We took a "nearby" second point $\left(x_{2}, y_{2}\right)=(a+h, f(a+h))$.
Slope of secant $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(a+h)-f(a)}{a+h-a}$
Thus, we defined the derivative (i.e.
slope of tangent) by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Entry Task: $f(x)=2 x^{2}-3 x$

1. Find $f^{\prime}(4)$.
2. Give the equation of the tangent line at $x=4$.
3. Find $f^{\prime}(x)$.

$$
Y
$$

Example:

$$
g(x)=\frac{2 x}{x+3}
$$

1. Find $g^{\prime}(2)$.
2. Give the equation of the tangent line at $x=2$.
3. Find $g^{\prime}(x)$.



Observations:
Given $y=f(x)$.

- $y=f^{\prime}(x)$ is a new function.
- $f(x)=$ "height of the graph at $x$ "
- $f^{\prime}(x)=$ "slope of the tangent to $f(x)$ at $\mathrm{x}^{\prime \prime}$
- We call it the "instantaneous rate of change" (speedometer speed)
- The units of $f^{\prime}(x)$ are $\frac{y-\text { units }}{x-\text { units }}$.

Fundamental to all applications:

| $y=f(x)$ | $y=f^{\prime}(x)$ |
| :---: | :---: |
| horiz. tangent | zero |
| increasing | positive |
| decreasing | negative |

Notation:
Early we found

$$
\begin{array}{ll}
\text { if } & f(x)=2 x^{2}-3 x, \\
\text { then } & f^{\prime}(x)=4 x-3
\end{array}
$$

Other ways to write this include:

$$
\begin{aligned}
y^{\prime} & =4 x-3 \\
\frac{d y}{d x} & =4 x-3 \\
\frac{d}{d x}\left(2 x^{2}-3 x\right) & =4 x-3
\end{aligned}
$$

Later we will also discuss:

$$
f^{\prime \prime}(x)=y^{\prime \prime}=\frac{d(d y / d x)}{d x}=\frac{d^{2} y}{d x^{2}}
$$

## Example:

$$
\begin{array}{rlrl}
\text { if } & y & =f(x) & =2 x^{2}-3 x, \\
\text { then } & y^{\prime} & =f^{\prime}(x)=4 x-3 \\
\text { and } & y^{\prime \prime} & =f^{\prime \prime}(x)=4
\end{array}
$$

which can also be written as

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(4 x-3)=4
$$

## Differentiability

Sometimes we can have a place where "slope of tangent" doesn't make sense.

Definition: We say a function, $y=f(x)$ is differentiable at $x=a$
if the following limit exists:

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Otherwise it is not differentiable at $x=a$.

In order to get differentiable:

1. It must be defined at $x=a$.
2. It must be continuous at $x=a$.
3. The "slope" must be the same from both sides.
